The calculated distance is \(D^2 = \frac{1 - COR(`x`')}{2}\)
dist_pearson(x)
a matrix
distance matrix (distance object)
The distance between the rows of x
is calculated.
The possible values range
from 0 (perfectly correlated)
over 0.5 (uncorrelated)
to 1 (perfectly anti-correlated).
S. Theodoridis and K. Koutroumbas: Pattern Recognition, 3rd ed., p. 495
dist_pearson(flu[[]])
#> 1 2 3 4 5
#> 2 0.0006321414
#> 3 0.0004898572 0.0002887337
#> 4 0.0004424217 0.0002664884 0.0001705457
#> 5 0.0004852460 0.0002368675 0.0001909183 0.0001149165
#> 6 0.0004242441 0.0002416168 0.0001591670 0.0001208129 0.0001102328
dist_pearson(flu)
#> 1 2 3 4 5
#> 2 0.0006321414
#> 3 0.0004898572 0.0002887337
#> 4 0.0004424217 0.0002664884 0.0001705457
#> 5 0.0004852460 0.0002368675 0.0001909183 0.0001149165
#> 6 0.0004242441 0.0002416168 0.0001591670 0.0001208129 0.0001102328